This is a talk about data viz

Jennifer Piscionere

Data Scientist / Extronomer

This is a talk about communication

This is a talk about science

Learn Through Visual Aids

Your job is to convince {\ref} of your science

Advisor Committee Referee Public Yourself

Grice, Implicature, 1975

Everything you say should be true and backed by evidence.

Everything you say should be true and backed by evidence.

Everything you say should be appropriate for the audience you are speaking to.

Everything you say should be true and backed by evidence.

Applicable to **plots** as well as **talks** Everything you say should be appropriate for the audience you are speaking to.

Everything you say should be true and backed by evidence.

No viz is created in a vacuum

Everything you say should be appropriate for the audience you are speaking to.

Papers

Presentations

Papers

Presentations

The key to a good plot

Remove unnecessary data ink and **emphasize** the most important data ink left.

Them Us

We Are Selling More Than Them

When we are examining data, what can we look for?

- Does this data describe a **geometric** object?
- Are the data points **connected** to each other?
- Can we describe data points with a fixed set of **categories**?
- Is there a **quantity** associated with the data?
- Are the datapoints **continuous** along one or more dimensions?

When we are examining data, what can we look for?

- Does this data describe a **geometric** object?
- Are the data points **connected** to each other?
- Can we describe data points with a fixed set of **categories**?
- Is there a **quantity** associated with the data?
- Are the datapoints **continuous** along one or more dimensions?

Is your data categorical or continuous?

Be Mindful of Binning

Avoid automatic line fitters and smoothers

Make it black and white friendly

Make it colorblind friendly

Avoid Green

Set up your plot theme first

This includes colors, tick mark size, axis placement, fonts, etc.

Be confident about your log-log axes

Don't Make People Figure Out the Point

We Are Selling More Than Them

Presentations

Turning your paper plots into presentation plots

This is a **paper** plot

Have a simple message you repeat often

An aside on powerpoint

For general talks, pitch your presentation to a first year grad student

Use Words Sparingly

If words are here

- They are not listening to you
 - This is a VERY important paragraph about how if you put everything on your slide, people won't pay attention to you and instead read all the words in this very long run on sentence in too small font and maybe I should've used Helvetica?
- Definitely should've used Helvetica
- Is Helvetica even available on macs?
- I should watch the Helvetica documentary again
- That was wild.
- Update: Helvetica IS available on macs

Include reminder or catch-up slides

Did you fall asleep?

- Repeat your simple message often
 - Say everything you need and nothing you don't
 - Everything you say should be true and backed by evidence
 - Everything you say should be appropriate for your audience

Do not put tables in your talk

Please	Do not	Put	Tables in	Your	Presentations	
0.2 < z < 0.5	$(0.40\substack{+0.05\-0.05}, 0.22\substack{+0.06\-0.06})$	1.5	$(1.09\substack{+0.28\-0.10}, 10.33\substack{+0.86\-0.27}, -0.77\substack{+0.22\-0.31})$	0.7	7.2	0.2
0.5 < z < 0.8	$(0.46\substack{+0.07\-0.06}, 0.45\substack{+0.09\-0.08})$	8.0	$(1.42\substack{+0.13\\-0.06}, 10.3\substack{+0.39\\-0.17}, -0.83\substack{+0.18\\-0.17})$	0.57	22.8	16.9
0.8 < z < 1.1	$(0.46^{+0.08}_{-0.3}, 0.68^{+0.45}_{-0.13})$	4.1	$(1.83^{+7.1}_{-0.20}, 10.7^{+33}_{-0.44}, -0.69^{+0.54}_{-0.35})$	25.0	14.9	21.9
1.1 < z < 1.5	$(0.63\substack{+0.05\-0.06}, 0.59\substack{+0.09\-0.06})$	5.8	$(1.93^{+0.18}_{-0.19}, 10.62^{+0.56}_{-0.3}, -0.93^{+0.23}_{-0.16})$	1.3	9.1	2.1
1.5 < z < 2.0	$(0.58\substack{+0.05\-0.06}, 0.86\substack{+0.11\-0.07})$	2.8	$(2.22\substack{+6.3\\-0.27}, 10.95\substack{+13.7\\-0.5}, -0.82\substack{+0.30\\-0.35})$	10.77	-8.4	-36.3

Use Cartoons

*Made With Google Drawings

Avoid Green

Don't mess with fancy fonts

Final tip

Do not make a .ppt over 50mb

Presentations

Presentations

Posters

Presentations

Websites

Presentations

Interactive objects

A 'special project' is how I made the transition from astronomy to data science

http://jpiscionere.github.io/Sequences_sunburst.html

Presentations

Posters
General Tips

- First time- use a .ppt template
- Simple Background
- Edit on a simple printed page
- Don't print out full glossy too heavy
 - Fabric is even better!
- Have printed handouts

0.6 < z < 0.7

Have fun and care about your audience

Resources

- 'Show me the numbers' by Stephen Few
 - <u>https://nces.ed.gov/programs/slds/pdf/08_F_06.pdf</u>
- Data Visualization by Jill P. Naiman
 - <u>https://uiuc-ischool-dataviz.github.io/spring2019online/</u>
- My slides on how to rip off a cool visualisation and put it on your website
 - <u>http://jpiscionere.github.io/d3.pdf</u>